山東埃爾派 | 點擊量:0次 | 2021-03-10
高嶺土有機插層機理 埃爾派定制化高嶺土加工設備
目前各行各業對非金屬礦物填料的要求越來越高,特別是對產品粒度的超細化要求,對于高嶺土煅燒后(白粉)的分級,目前國內很多廠家使用的是國內生產的普通型分級機,對于2微米產品百分點的提高效果微乎其微,只是起到過濾大顆粒的作用,有些高嶺土廠家甚至把這種分級設備閑置起來,既浪費了投資又延誤了好的市場時機,這些情況在國內眾多著名的高嶺土廠家都實際存在。
高嶺土有機插層機理
(1)插層作用及插層復合物:高嶺土加工設備是典型的層狀硅酸鹽礦物,其晶體結構是由硅氧四面體和鋁氧八面體片層,在c軸方向上交替排列而形成的1:1型層狀結構。層內為強烈的共價鍵作用,層間則是氫鍵作用。在一定條件下,某些物質可以克服層間氫鍵插入層間空隙,而不破壞其原有的層狀結構,這種作用稱為插層作用。通常將層狀硅酸鹽稱為主體,被插層的有機分子稱為客體或插層劑,由插層作用形成的化合物稱為插層復合物。高嶺土層間不存在可以用來置換的離子,而且層間氫鍵的作用強,因此只有少數有機分子能夠直接插入高嶺土層間,如二甲基亞砜(DMSO)、肼、甲酰胺、乙酰胺、N-甲基甲酰胺、乙酸銫、乙酸鉀、乙酸銨等。有些分子雖不能直接進入層間,但可以通過取代、夾帶的方式間接進入高嶺土層間,如甲醇、苯甲酰胺(BZ)、脂肪酸鹽、1,4-丁二醇、對硝基苯胺、烷基胺等。
(2)高嶺土插層反應的機理:曹秀華等(2003)認為,高嶺土生產設備的插層反應是通過層間氫鍵的斷裂以及和插層分子形成新的氫鍵而實現的。也可以說是電子轉移機理。對質子給體和質子受體而言,形成的氫鍵并不相同。質子給體,如尿素和酰胺類物質含-NH2-,通過和硅氯層的氧原子形成氫鍵而插層,由于氧是比較弱的電子受體,因此這類氫鍵作用力較弱。而對于質子受體,如乙酸鉀和DMSO含有可以接受質子的官能團-C=O-或-S=O-,和鋁氯層的羥基形成氫鍵C=O―HO―A1或S=O-HO-A1而吸附于高嶺土層間。同時具有兩種官能團的插層劑,如尿素(C=O,-NH2),有可能同時形成上述兩種氫鍵,溫度為298K時,尿素通過一NH2和高嶺土形成氫鍵,而77K時,可以同時形成上述兩種氫鍵。王煉石等(2002)頭批提出醇鈉奪氫插層理論,制備了插層型高嶺土。
由于這兩類氫鍵相對來說都比較弱,因此小分子插層高嶺土不穩定,水洗、在空氣中加熱或降低插層劑的濃度等,都有可能導致小分子的脫嵌,插層高嶺土回復到原來的晶體結構。插層高嶺土的穩定性和形成氫鍵的個數有關,形成氫鍵越多,插層高嶺土越穩定。FA-地開石、MFA-地開石、DMSO-高嶺土分別可以形成4個、3個、2個氫鍵。因此形成插層物的穩定性順序為:FA-地開石、MFA-地開石、DMSO-高嶺土。
(3)插層熱力學:熱力學基本原理認為,任何一個化學反應能夠自發進行的條件是:在等溫等壓的條件下,反應的AG應該小于零。
有機分子插入高嶺土層間后,分子趨于有序排列,熱力學上是個熵減的過程,即△S<0。插層反應能否進行就取決于插層反應的焓變△H。插層反應一般為放熱反應,即△H<0。則當|△H|>T|△S|時,反應體系的△G<0,即插層過程可以進行。這表明,只有當有機插層分子與高嶺土層間存在特定的相互作用時,才能使插層反應得以進行。這些相互作用包括離子交換、酸-堿作用、氧化還原作用和配位作用。
對于煤系高嶺土煅燒前的研磨和天然高嶺石煅燒后的加工山東埃爾派粉體科技有限公司采用國際標準配置的球磨機+分級機系統。根據用戶的要求,采用不同類型的分級機和分級技術,通過分級機的調節,使產品和粒度分布不僅滿足用戶的現時需要,而且滿足不斷增長的未來需求。